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1 Introduction

Measurement errors are the differences between the actual desired values and the ob-
served values. In the real world, it is usually very difficult to obtain exactly the “true”
values. Instead, one may only get the observed values that are related to the true values
through the measurement errors. Extra care must be taken to deal with the mesure-
ment errors in the analysis because the data become more noisy and error-prone when
the measurement errors are taken into consideration.

Measurement error models are those in which one or more of the explanatory vari-
ables cannot be observed directly and are measured with error. Fuller (1987) gave
a comprehensive introduction to measurement error models. Carroll, Ruppert, and
Stefanski (1995) discussed nonlinear measurement error models and the corresponding
approaches.

In this paper, we are concerned with a problem of selecting a treatment that has
the strongest relationship between an explanatory variable and the response variable in
a linear measurement error model. For the general approaches to statistical selection
problems, references can be made to Bechhofer, Santner, and Goldsman (1996) and
Gupta and Panchapakesan (1996).

The following is the measurement error model that we are interested in. Suppose

there are k treatments Il;,7 = 1,...,k and n observations from each treatment. For
each treatment II;,7 = 1,...,k and each observation j = 1,...,n, we have the following
model:

Yij = Boi + PuXi; + €5, Wi = Xi; + Uy (1)

For each 7 = 1,...,k, the intercept By; and the slope Bi; are both unknown, and
{(Xi;,Uij,€5),1 < j < n} are assumed independent with mean (0,0,0) and covariance
diag(0ziy Ouuis Ocei), Where diag(ouui, Ouui, Ocei) refers to a 3x3 matrix whose diagonal
elements are 0,44, Ouui, and oe; while the rest of the elements are all 0. We assume that
for each 7, 0y; is known.

We are interested in the relationship between the explanatory variable X and the
response variable Y. However, X;; cannot be observed directly, instead we observe W;;,
which is X;; mixed with a linear error term U;;. An interesting question here is: how to
select the treatment that has the strongest relationship between the explanatory variable
X and the response variable Y?

In this selection problem, the slope f;; is important. It is the rate of the change in
the mean value of Y with respect to X and therefore a measurement of the strength of
the relationship between X and Y. Gupta and Lin (1997) studied a selection problem
in which the selection criterion was to select the one that has the largest slope under
this modeling setting.




However, sometimes the relationship between X and Y can take opposite directions
and the k slopes can have different signs. In other words, some slopes may be negative
while some are positive. If we stick to the criterion of selecting the largest slope in
this situation, then we are essentially excluding the negative slopes and only considering
those positive ones. From this point of view, it is necessary to broaden the scope of
our consideration and generalize the selection problem studied in Gupta and Lin (1997).
In this paper, we studied the problem and derived a selection procedure of which the
selection criterion is to select the treatment that has the largest absolute value of the
slope.

A treatment II; is said to be the best if the absolute value of the slope [8y;] is the
largest, i.e., |f1;| = maxi<j<k |f1;|. Otherwise the treatment is said to be non-best. The
selection goal is to select the best treatment.

Let Q@ = {81 = (Bu,Pr2,---,Pw)|Pu € R,i = 1,...,k} be the parameter space
and a = (ay,...,a;) be an action, where a; = 0 or 1, 4 = 1,...,k. When action a
is taken, a; = 1 means treatment II; is selected as the best and a; = 0 means II; is
excluded as the non-best. For i =1,...,k, let W; = (Wiy,...,Wy), Y = (Ya, ..., Yin),
W = (Wyi,...,Wi), and Y = (Y;,...,Y,). Let x be the sample space generated by

(W,Y). Since the true order of |Bu],...,|Bi| is unknown, we denote |Byy| < |Biy| <
. < |Bix)|- For simplicity, we assume that |Bix| — |Bik-y| = 26 > 0, where § is
unknown.

A selection rule d(w,y) = (di(w,y),...,dx(w,y)) is a mapping defined on x, where
di(w,y) is the probability that given W =w and Y = ¥y, IL; is selected as the best. Also,

Yk di(w,y) =1, for all (w,y) € x. In other words, only one of the k treatments will
be selected as the best.

We consider the following loss function:

L(B1,a) = { 1, if the best treatment is not selected, )
28/ =10, if the best treatment is selected.

2 Formulation of the Selection Procedure

Before we develop a selection procedure for this problem, let us first look at the estima-
tion of these slopes. Fuller (1987) has shown that the ordinary least square regression
analysis will not work in this case because the ordinary regression slope estimate is
always biased toward 0. We will use the moment estimators instead.

The population moments of (W;;,Y;;) satisfy

(Bwi, tys) = (EW5, EY35) = (0, Boi), (3)



and

(awwia Owyis Uyyi)
(Varwi;, Cov(Wy, Yij)éVarYij)
(wai + Ouuis BriOzai, Bri” Ogai + Ueei)~ (4)

The sample means (W;,Y;) and the sample covariances (Syuwi, Swyi, Syyi), Where, for
example,

(0, - W) (Y — Vo), (5)

Swyi:n_l.

1 n
J:

will be the basis of our selection procedure.

We estimate the parameters by replacing the unknown population moments with
their sample moments. Note that o,.; should be positive. Otherwise Xi; can take
only one value for all § = 1,...,n and there is no point to study the quantitative
relationship between X;; and Y;;. Therefore, estimator o;,; should be positive as well.

Let 0gzi = Swwi — Ouui When Sywi — 0wy 18 positive, otherwise let 075 = S, 552 ;. Also
define
B = (Swwi = Ouui) " Suyis  if Swwi — Owui > 0, (6)
L SraiSyyis otherwise.

We construct selection procedure d,(w,y) = (din(w,y), d2n(w,y), ..., dka(w,y)) as
follows:

1, if |ﬁ1i| = maxXj<j<k |,3Al|
dn , — ) ; S J 1 7
(w,7) {0, otherwise, ")

when W = w and Y = y are observed. In other words, the treatment associated with

the largest estimated absolute value of the slope max;<;< |ﬂ1,| will be selected as the
best.

3 Performance of the Selection Procedures

We now study the performance of the selection procedure developed in (7). A measure
of the performance of this decision rule is the probability of making a wrong decision
when using this rule. Since in this case the loss function is the 0-1 loss, the probability
of making a wrong decision is the expected risk of the proposed procedure. We would
like the probability of making a wrong decision to be as small as possible.
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Denote P, to be the probability measure generated by the random observations

(W,Y), and for each (w,y) € x, let

= {Z| |Bui| = 1I£1a<)$c |131]’ = Iﬂl[k]l 1=1,. l"}>
and
7’; = {Z| lﬁlil = 1I£1]a<xk |B1j|’ t=1,... ak}
Then, the expected risk of the proposed selection procedure is
EMYL(B, du(w, y))
k k
= Z z P.{i* =1,i; =5}
i=1j= l,j;éi
k * Ozxi Ogry
_<_ Z Z# Pn{Z - Z Z —‘]aSwun Oyui > T,Swwj - C"uuj > }
i=1j=1,j#1
k k o
+Z Z Pn{z* = 7',2:1 :j’Swwi -~ Oyui < :;m}
i=1j=1,j#1i
k k G
+3° 3 B{i* =41 = j, Swwj — Ouuj < ’;””’}
i=1 j=1,j#1
ko k . oo
.<_ Z Z Pn{'ﬁlzl - I,BIzI > 5 Swwz Ouui > ﬂaSwwj - Juuj > ﬂ}
i=1 j=1,j71 2 2
k k . O G
+E Z Pn{',Blj‘ - |ﬁ1jl > 6a Swwi — Oyui > lﬂaswwj - Uuuj > ﬂ}
i=1 j=1,j#1 2 2
k k G
+Z Z Pn{Swwi — Ouyui S :12:1:1}
i=1 j=1,j#i
k k O
£ S PulSuy — 0wy < 22}
i=1j=1,j#i
k k . O
S Z Z Pn{lﬁli' - lﬂlil > 5, Swwi — Oyui > %&:z}
i=1 j=1,j#1 '
k k . O s
+>. > Pu{lByl = 1Bul > 6, Suwwj — 0wy > 57}
i=1 j=1,j#1
k G
+2k Z Pn{Swwi — Oyui S :;:m}
=1
k . O
S 2kz Pn{'ﬁlz - Blil > (5, Swwi — Oyui > :;.TZ}
=1

(8)

(9)

(10)



k
Ozzi
=1

From above we observe that it suffices to analyze the performance of the followings
two sequences:

Oxxi 3 Oxxi
Pn{Swwi — Oyui S T}, Pn{lﬂlz - ,Blzl 2 6; Swwi — Oyui > T} (11)

Definition 1 A sequence of selection procedures {d,(w,y)}32, is said to be asymp-

n(W,
totically optimal of order e, if E(W’X)L([j ,dn(w,y)) = O(en), where e, is a sequence of
positive numbers such that lim,_,. e, = 0.

The large sample performance of the derived selection rule d,(w,y) will be analyzed
in two situations.

3.1 When The a-th Moment Exists (a > 2)

In this subsection, we suppose that the a-th (o > 2) moments of (Xj;, Usj,€;;) exist,
that is, »

EIXijla < 00, EIUiJ"a < 00, Eléijla < 00. (12)

We will show that the expected risk of the proposed selection procedure converges
to 0 at the rate of o(n=(®/2-1)),

We introduce some useful lemmas. The first lemma is well known, a similar result
can be found in Baum and Katz (1965).

Lemma 1 Let X;i,...,X, be independent random variables with mean 0. Suppose for
a fixed number a > 1, E|X;|* < o0, for i =1,...,n, then for any ¢ > 0,
P{|3_X/n| > €} = o(n™*7 D). (13)

As a consequence of Lemma 1, we have

Lemma 2 Let Xi,..., X, be independent random variables with mean EX; = p gnd
variance VarX; = o2, for i = 1,...,n. Let X = 17 X; and S2 = L ¥ (X; — X)2
Suppose for = 1,...,n and a fixed number a > 2, E|X;|* < oo, then for any € > 0,

P{|S2—-0% >¢} = o(n_("/z“l)). (14)
Proof.
2 2 1 N 2 N 5o 2
P{S; —o*| >t = P{| Y XP- X —0o%| > ¢} (15) .
n—1:- n—1




for n large enough, that is, when n > max (2, [4" ] + 1), we have 2=%

IA

$- From Lemma 1, we have

and

P{I—ZX2 (1?40 2 £}
+P{im 2 _ np? +a |_
P{I= 00X - (4 +a>)|z";1-;-
FP{XP =4 2 £ - ~o%)

1 9 €
P{= (X2 = +0*) = )

+P{IX? - 2| 2 )
I + I,

b= P{= S0~ (4 + o)) 2 §
— O(n—a/2—1)
= P{IX* - 2| 2 3}
= P{|(>‘<+u><f<—u>|z§ and (X + p) > (2n+1)}

+P{|(X + 1) (X = p)| > > - and (X +p) < (2u+ 1)}

HoIA

o(n~@"1),

P =) > 1)+ PAGH+ DI(X - ] > ¢

From Lemma 2, we can see that

Moreover,

P

Pl

0‘ .
P{Swwi — Oyui S %}

Bri — Bri| > 6, Swuwi
Swyi

wwi — Oyui

P{Swwi — Owwi S _O.:;m.}

= o(n_("/z“l)).

Orxi

= Oyui > —
o 2}

O i
- Bli' Z 67 Swwi — Oyui > xxz}

2

(18)

(19)



Oxzi
_<_ Pn{ISwyi - ﬂli(Swwi - Uuuz)' > 5“5_}
= 'n{ln _ 1 Z(W‘LJ W )(KJ Y 511 Z Uuuz)'
Ogai
>
1 n 1 n n -
= n{|_ Z Wi;Yis — — 1ﬁ1i S WE+ — lﬂliW’
J 1 j=1
U:I:xi
+,81i(7uui| >0 }
1 n Opai
< P {l——— Z WZJYLJ ﬂlz@cm' >4 6 }
+Pu{ | WiTi - ﬁlin ~ Bl 2 675}
0-13131
+Pn{‘ ,Bh Z ﬂlt(acc:u + Uuuz)] > 6 6 }
= J1 + Jz + J3. 4
Foranyi=1,...,k, {W;;Y;;,7 =1,...,n} are independent random variables with mean
E(W,;Y;;) = Bri04zi- By Holder’s inequality,
E|Wy;Yy5|*? </ E|Wy|eE|Yyle < oo, (20)
therefore, we have
& n—1 Oxxi
=P {Iﬁ > (WiYij — Priozsi)| > - 4 . } (21)
j=1
= o(n(_“/z_l)).
Since
WY — W} (22)
= VVZ(}_’, - ,31im)
= Wi(Bu + & + Bulh)
= BoW; + &W; + BuXU; + ,311'[7,-2,
we observe that
X T N T7 7 1 -1 Tl
Jo = Po{|BosW; + &W; + BuXiU; + Br:U? — Eﬂu%ui > z 06 }
= n—1 _0pg
< Pn i VVi| = =
< {160 94 } (23)




n-—1 Orri

P{|laW;
+P,{|e 24}
1 O’.’E.’El
n—1_0g
+Pn{|ﬂ1iUi — —,Blio'uuil =, 4 24 }
-1 om
S P {',801 }

n
-1 szz

-1 0
; > zTi P >
+P{Jal > \/ 24}+ il 57

\ 1 0$$1 1 Uxmz
+Po{ly/BuXi| > }+P {1/ Buili| > 24 }
_ 1 o
Pn i 2 — —TUyui > 2t .
P07 = o] 2 To6%2)
Then by Lemma 1, we have
— 1 042 O(Tl_(a_l)) if /30‘ # 0
> — 3 1 b
PollboaWil 2 —=0573 {0, if Boi = 0,
= o(n”(a_l)),
_ —1 U:z::cz —(a—1)

P{l&l > ) = ol ),

P 2 1| 2072 = ofn~(e)

n (2 24 - ]

-1 Um:z (o

P, {l\/:BlzX| > }: 0(” ( 1))a
x -1 Tt —(a—
Paf{ly/Bulil 2 {| =622} = o(n~(=D),
_ -1 G
Pn i Uz - TO0yui > o ==
(1u(0? = ~ow)] 2 “==0%221)

(24)



. n—1 0z 1
< P{|BuU?| > ) ;Zz - Eﬂlioum‘}
— n—1_o i 1
= Pofly/Bulil > \/ - ) ;4 - 'ﬁﬁliauui}

= o(n V),

Therefore, J, = o(n~(®1). Similarly,

n—1 O i

0
6

1 n
Jy = Pn{lﬁﬂli Y Wi = Bri(0zai + Ouui)| 2
=1 -

= o(n~(®/27D),

} (30)

Hence, by combining the above arguments, we have the following theorem.

Theorem 1 The selection procedure d,(w,y), defined in (7), is asymptotically optimal
with a convergence rate of order o(n~(*/2~1)) under condition (12). That is,

EMYL(B, du(w,y)) = o(n™ /™), (31)

3.2 When The Moment Generating Function Exists

In this subsection, we suppose the moment generating functions of {X7, UZ, €2} exist
in a neighborhood of the origin, that is, for -T' <t < T,

Ee™Xi <00, Ee¥i <00, Eel% < 0. (32)

where T is a positive constant.
We first introduce the following lemma, which can be found in Petrov (1995).

Lemma 3 Let {Xj,...,X,} be independent random variables with mean EX; = 0,7 =
1,...,n. Suppose there exist positive constants gy, ..., g, and T such that

EetXi < %2 (i=1,...,n) (33)
for =T <t <T. Let G, = 21, gi, then

- —(/2Ga) - if 0 < x < G,T
P Xz > < € ? 1 SX > n-, 34
( 1:21 |2 2) < {e_(T”/2), if x> G,T. (34)

The following lemma clarifies the probabilistic meaning of the conditions of Lemma 3.

Lemma 4 Let X be arandom variable with mean EX = 0. The following two assertions
are equivalent:

10




(I) There exist positive constants g and H such that

EetX < 97/ for —H<t<H, (35)

(IT) There exists a positive constant T such that

EetX < 0o for —T<t<T. (36)

Proof. It is clear that (I) implies (II). We now prove that (II) also implies (I). If (II)
holds, then the random variable X has the moments of all orders, and the following
relation holds:

1
log Ee'X = iazt2 + o(t?) (37)

as t — 0, where 0% = EX?. For any constant g > 02, the inequalities log EetX < gt2/2
and EeX < 9%/ hold for all sufficiently small ¢, that is, (I) is true. This completes the
proof of Lemma 4. As we can see in the proof, we can always set g = 202.

We further assume that the 4-th moments of {X;;, U;j, €;;} are uniformly bounded,
that is, there exists a positive constant C such that

EXi<C,  EUS<C,  Eé<C. (38)

We can see from (38) that EW};, EY;} and E(W;;Y;;)? are all bounded.

159
We analyze Po{Suwi — 0uui < %5} first.

Pn{Swwi — Oyui S U;xi} (39)
S Pn{lswwi - wail Z _O';mi}
< PIE Y WE - ol 2 B1E)
= n nj=1 ij wwi| < n_ 2
v2s €L o
FPAIWE 2 § - o)

12 €
= P{IE E_:(Wf? - wai)l 2 Z}

j=1
+P(WH > /5

= Kj+ Ky,
for n large enough, that is, when n > max (2, (7] + 1), we hav nle>cand £—102 >
$- Since for j =1,...,n, E(Wij — 0ywi) =0 and for -T/2 <t < T/2,
Eecwfj < Ee[t(X,-,-+Uij)2| < E.(e2|t|xfjez|t|U3j) — E(ezltlej)E(ezltlU}’j) < 00, (40)

11




By Lemma 3 and Lemma 4, we have

1 ¢
Ko = P{I (W5 = o)l 2 3}
J=
6_(n262/32Gn)’ if € S 2TGn/na
e~ (Te/®n, if € > 2TGy/n,

where G,, is twice the sum of the n variances of (Wé — Owwi), J = 1,...,m.

(EW3,j =1,...,n) are bounded, G, = O(n). Therefore,

1& €
K, = P“E E(Wz — Owwi)| > Z}

j=1
o [een - if e < 9T Gy,
=\ e-@e/om if € > 2TGy/n,

= O(e_c;(ln)’
where cJ, is a positive constant. Similarly, for ~T <¢ < T,

Ee™i < BeltWil < Bell(Wi+1) < o,

Ky = P{IWi| 2 /5
o= O(e_c;fzn),

where c}, is also a positive constant.

Next we consider Pn{|ﬁ1i — Buil > 6, Swwi — Ouui > %5}, We have

7 Ogxi
Pn{lﬂli - ﬁlil 2 5, Swwi — Oyui > ac2 }

n
1 n Ogxi

- Yo — Tl >
Pn{ln_ljzvvzjy;j IBIzO-a::czI_(s 6 }

IA

-1 n—1

n - n - 1 i
Y — ——BuW - O] > 06—
+Pn{|n_1W i n—lﬁlW’ n-——-llBlU |_5 6 }
Pl ——B1 S W2 — - B1i(02 > § st
+ n{ln_l lzjz;;l ij_nmlﬁlz(o':c:m'l’a'uui)l_ 6 }
= L1+L2+L3.

(41)

Since

(42)

(45)

For any i = 1,...,k, {W;;Y;;,j = 1,...,n} are independent, by Cauchy-Schwarz’s

inequality, we have, for -7/2 <t < T/2,

(WZ+v2)
Ee™i¥i < EelWiaYil < Bll—5"L <\ EeliWE B2 o

12

(46)




Besides, for each ¢ and j, the variance of W;;Y;; is bounded, therefore,

n

n—1 Ozai
L, = P {|"‘Z(Wijyij"ﬁ1i0'm:i)| > 4 5 } (47)
m =1 n
praeng O(e—clfln)’
where ¢} is a positive constant. Next we analyze L, and Lz. Similarly,
n—1 szi
Ly < Pu{lfail > g%y (48)
+Paflal 2 U’”“}+P{IWI > ey
‘ 24 24
. -1 cr i -1 0 ;
+Po{ly/BuXi| > = }+P {I\/BuU;| > ;Z }
_ 1 1 o
Pn iU‘z'—“‘uui > 63:.1:1
+Pu{1Bu(0? = o) 2 T
= 0(6—0L2n)’
and
-1 TTi
L3 = P{I ﬂlzz ﬁll Uxxz+0uuz)|> n 606 } (49)

_ o),

where c}, and cj, are positive constants. Hence, by the above argument, if we set
¢* = min(ck,, ck,, C},»Ci,1 CL,), then ¢* > 0. We have the following theorem.

Theorem 2 The selection procedure d,(w,y), as defined in (7), is asymptotically
optimal with convergence rate of order O(e™*") under conditions (32) and (38). That
is,

VLB, du(w,y)) = O(e™™), (50)

where c* > 0 is defined as above. We consider two special situations next.

Two special situations.

1. {(Xi;,Uij,€5),1 < j < n} are normally distributed. In this case, {(Xij, Usj, €:;)}
are iid. N3((0,0,0),diag(0ezi, Cuui, 0eei)). Since (X7Z/0zas, zJ/aum,osu/aee,) follow x?
distributions, their moment generating functions exist. By Theorem 2, the selection
procedure d,(w,y) in this case is asymptotically optimal with the rate of convergence of
order O(e~*'").

2. {(Xi,Uij,€;5),1 < j < n} are bounded. Then conditions (32) and (38) always
hold and therefore, the selection procedure d,(w,y) is asymptotically optimal with the
convergence rate of order O(e=¢'").
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4 Simulations

We carried out a simulation study to investigate the performance of the selection proce-
dure d,. The expected risk E¥Y)L L(B,dn(w,y)) is used as a measure of the performance
of the selection rule. In this study, we considered normal distributions and there are
i = 3 treatments. The simulation scheme is described as follows:

1. Foreach j=1,...,n and ¢ = 1,2 and 3, we generated independent random observa-
tions (X;;, Usj, €;;) from multivariate normal N3((0,0,0)7, diag(0szi, Ouui Ocei))-

2. Let W;; = X;; + Us; and Yy; = Boi + BraXij + €.

3. Based on (W;;,Y;;), we obtained the estimator of By;, then made the selection using
d, and computed D(W,Y) which is as follows:

(1, if we make a wrong selection,

D(W,Y) = {0, if we make a correct selection. (51)

4. Step 1, 2 and 3 were repeated 10000 times. With each set of observations, D(W,Y)
would be either 0 or 1, as we might make a right or wrong decision. When we take the
sample (w,y) repeatedly, by the law of large numbers, the average of D(W,Y) would

be getting very close to the expected risk E(W’X)L(Q, dn(w,y)) and can be used as an
estimator of the expected risk when the number of iterations is large enough.

We specified the number of iterations to be 10000 to make sure that the deviation
between the estimated value and the true value is less than 0.01 with 95% confidence.
The following is a brief introduction to the power calculation in this study. We are
interested in the unknown probability of making a wrong decision. So we take the
sample repeatedly and each time the result can be either right or wrong. Therefore, we
have a binomial setting here: we use the sample proportion (denoted by p) to estimate
the population proportion (denoted by p). When the number of iterations (denoted by
N) is large enough,

p—

\/@'

With 95% confidence, [p — p| < 2¢/2222). When N = 10000, since p(1 — p) < 0.25,

/ /025
<2
15— p o006 = 001

This is the reason why the number of iterations was set to be 10000. The results from
the simulation study are listed in Table 1 for the case where

~ N(0,1).

Ozl = Ogzg2 = Oggz = 1,

14




Ouul = Oyu2 = Oyuz = 1,
Teel = Oec2 = Oee3 = 1,
ﬁm = Boz = Boz = 0,
B11 = 0.4, f12 = 0.5, f13 = —0.6.

and

n = 10,20,30,40, 50,60, 70, 80, 90, 100, 200, 300, 400, 500, (52)
600, 700, 800, 900, 1000, 1100, 1200, 1500, 2000.

The curve of the estimated probability of making a wrong decision with respect to
n is attached in Figure 1 at the end of this paper. It bears out our conclusions that the
rate of convergence of the probability of making a wrong decision should be O(e™*'") in
this case.
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10
20
30
40
50
60
70
80
90
100
200
300
400
500
600
700
800
900
1000
1100
1200
1500
2000

Table 1
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0.5443
0.4851
0.4425
0.3926
0.3667
0.3578
0.3334
0.3219
0.2862
0.2743
0.1627
0.1103
0.0684
0.0488
0.0315
0.0271
0.0246
0.0163
0.0139
0.0089
0.0064
0.0035
0.0004
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